Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

(Z)-6-\{[1,3-Dihydroxy-2-(hydroxy-methyl)propan-2-yliminio]methyl\}-2-ethoxyphenolate, (Z)-6-\{[1,3-di-hydroxy-2-(hydroxymethyl)propan-2-yliminio]methyl\}-4-nitratocyclo-hexa-2,4-dienone monohydrate and (R, E)-2-[(1-hydroxybutan-2-ylimino)methyl]phenol

Süheyla Yüce, ${ }^{\text {a* }}$ C Çğdem Albayrak, ${ }^{\text {b }}$ Mustafa Odabaşoğlu ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$
${ }^{\text {a Department of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and }}$ ${ }^{\mathbf{b}}$ Department of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: syuce@omu.edu.tr

Received 31 January 2006
Accepted 10 May 2006
Online 15 June 2006
The title compounds $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{5}, \mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$, respectively, have been derived from 3-ethoxysalicylaldehyde, 5-nitrosalicylaldehyde and salicylaldehyde, respectively. The $\mathrm{C}-\mathrm{O}$ and $\mathrm{N}-\mathrm{C}$ bond distances, and three hydrogen bonds formed by the phenolate O atom, show that the zwitterionic form exists in the first compound. The second compound is transformed to the quinoid form as a result of resonance between the zwitterionic form and the nitro group. The third compound exists in the phenol-imine form, with appropriate $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond distances.

Comment

There is considerable interest in Schiff base ligands and their complexes because of their striking antitumour activities (Zhou et al., 2000). Schiff base compounds show photochromism and thermochromism in the solid state by proton transfer from the hydroxy O atom to the imine N atom (Cohen et al., 1964), i.e. phenol-imine/keto-amine tautomerism. It is known that the phenol-imine tautomer is dominant in salicylaldimine, while the keto-amine form is preferred in the naphthaldimine Schiff bases depending on the solvent polarities. Moreover, o-hydroxy Schiff bases can exist in different tautomeric forms. The configurations of these compounds are controlled by steric and electronic effects (Filarowski et al., 2002), and the phenol-imine (molecular or phenol) and ketoamine (or keto) tautomeric forms are the most common. The substituents on the phenol ring affect the tautomeric equilibrium. The existence of electron-attracting groups on the ortho and para positions to the OH group increase the acidity
and the stability of the keto-amine form with the mesomeric and inductive effects (Filarowski et al., 2002) Studies made so far show that o-hydroxy Schiff bases with electron-attracting groups such as Cl and NO_{2} at the ortho or para position exhibit the keto-amine form (Wozniak et al., 1995). The zwitterionic form is rarely seen in the solid state (Krygowski et al., 1997).

(I)

(II)

(Ia)
(Ib)

We report here the structures of the title compounds, (I), (II) and (III). In (I), as shown in Fig. 1, there are two molecules in the asymmetric unit. Fig. 2 shows (II), with a water

Figure 1
A view of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2
A view of (II), showing the atom-numbering scheme and 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 3

A view of (III), showing the atom-numbering scheme and 30% probability displacement ellipsoids. The dashed line indicates a hydrogen bond.
molecule of crystallization in the asymmetric unit, and Fig. 3 shows (III). Selected geometric parameters are given in Tables 1,3 and 5. From Table 8, it can be seen that the C1-C2 bond

Figure 4
The packing of (I). Dashed lines indicate hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding or $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions have been omitted for clarity.
lengths in (I) and (II) are longer than that in (III), whilst the $\mathrm{C} 2-\mathrm{O} 1$ bond length in (II) is longer than those in other two compounds. The longest $\mathrm{C} 1-\mathrm{C} 7$ bond is in (III), and those of (I) and (II) are nearly equal. The C7-N1 bond lengths in all three compounds indicate that these bonds are $\mathrm{C}=\mathrm{N}$ double bonds. For compound (I), the comparisons of the $\mathrm{C}-\mathrm{O}$ and $\mathrm{N}-\mathrm{C}$ bond distances with the corresponding values of Allen et al. (1987), and also the existence of three hydrogen bonds formed by the negative O 1 atom, show that the zwitterionic form ($\mathrm{I} a$) is very important. In (II), by evaluating the $\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{O}$ bonds, it can be concluded that the zwitterionic form (II b) is important; this form arises from the resonating
effect of the nitro group. In the solid state, the phenol-imine tautomeric form exists in salicylaldimine Schiff bases (Kaitner \& Pavlovic, 1996; Yıldız et al., 1998). In addition, the position of atom H 1 , and the $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ bond distances, indicate that compound (III) is in the phenol-imine tautomeric form, (III a).

In compound (I), each molecule in the asymmetric unit has an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In addition, molecules A and B in the asymmetric unit are linked by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) forming a three-dimensional network, as shown in Fig. 4; this figure also shows the two five-membered pseudo-rings formed by intermolecular hydrogen bonds ($\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 B^{\mathrm{iii}}, \mathrm{O} 4 A-$ $\mathrm{H} 4 A \cdots \mathrm{O} 2 B^{\mathrm{iii}}, \mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 1 A^{\text {iv }}$ and $\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 2 A^{\mathrm{iv}}$; symmetry codes as in Table 2). In (II), there are two intramolecular hydrogen bonds, $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{O} 6-\mathrm{H} 6 \cdots \mathrm{O} 7$,

Figure 5
The packing of (II). Dashed lines indicate hydrogen bonds and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.

Figure 6
The packing of (III). Dashed lines indicate hydrogen bonds and $\pi-\pi$ interactions. H atoms not involved in hydrogen bonding have been omitted for clarity.
and the water molecules form intermolecular hydrogen bonds with atoms O4 and O6 (Table 4 and Fig. 5). Compound (III) has one intramolecular hydrogen bond, $\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{~N} 1$, which is shown in Fig. 3, and there is also an intermolecular hydrogen bond, $\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$ (Table 6 and Fig. 6). In all three compounds, in addition to the intermolecular hydrogen bonds, there are $\pi-\pi$ interactions (Table 7), leading to a threedimensional network.

Experimental

The three title compounds were prepared as described by Odabaşoğlu et al. (2003) using as starting materials 3 -ethoxysalicylaldehyde and tris(hydroxymethyl)aminomethane for (I) (yield 92\%, m.p. 437-439 K), 5-nitrosalicylaldehyde and tris(hydroxymethyl)aminomethane for (II) (yield 95%, m.p. $508-510 \mathrm{~K}$), and salicylaldehyde and (R)-(-)-2-amino-1-butanol for (III) (yield 85%, m.p. 329-331 K).

Compound (I)

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{5}$
$M_{r}=269.29$
Triclinic, $P \overline{1}$
$a=9.7424$ (8) \AA
$b=10.6073$ (8) \AA
$c=14.4820$ (11) \AA
$\alpha=102.592(6)^{\circ}$
$\beta=104.459$ (6) ${ }^{\circ}$
$\gamma=105.840(6)^{\circ}$

Data collection

Stoe IPDS-II diffractometer

ω scans

Absorption correction: integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.946, T_{\text {max }}=0.988$

$$
\begin{aligned}
& V=1326.7(2) \AA^{3} \\
& Z=4 \\
& D_{x}=1.348 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } 2 \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Prism, yellow } \\
& 0.43 \times 0.31 \times 0.19 \mathrm{~mm}
\end{aligned}
$$

22555 measured reflections 6080 independent reflections 3597 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.051$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.095$
$S=0.88$
6080 reflections
361 parameters

> H atoms treated by a mixture of independent and constrained refinement
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0498 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }<0.001$
> $\Delta \rho_{\max }=0.14 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (I).

$\mathrm{C} 8 A-\mathrm{N} 1 A$	$1.4695(18)$	$\mathrm{C} 8 B-\mathrm{N} 1 B$	$1.4726(18)$
$\mathrm{N} 1 B-\mathrm{C} 7 B-\mathrm{C} 1 B$	$123.48(14)$	$\mathrm{N} 1 B-\mathrm{C} 8 B-\mathrm{C} 10 B$	$105.30(12)$
$\mathrm{N} 1 A-\mathrm{C} 8 A-\mathrm{C} 9 A$	$111.76(12)$	$\mathrm{O} 2 A-\mathrm{C} 22 A-\mathrm{C} 33 A$	$108.00(15)$
$\mathrm{N} 1 A-\mathrm{C} 8 A-\mathrm{C} 11 A$	$106.66(12)$	$\mathrm{O} 2 B-\mathrm{C} 22 B-\mathrm{C} 33 B$	$107.19(13)$
$\mathrm{N} 1 A-\mathrm{C} 8 A-\mathrm{C} 10 A$	$105.68(12)$	$\mathrm{C} 7 A-\mathrm{N} 1 A-\mathrm{C} 8 A$	$128.68(13)$
$\mathrm{N} 1 B-\mathrm{C} 8 B-\mathrm{C} 9 B$	$112.15(12)$	$\mathrm{C} 7 B-\mathrm{N} 1 B-\mathrm{C} 8 B$	$128.84(13)$
$\mathrm{N} 1 B-\mathrm{C} 8 B-\mathrm{C} 11 B$	$107.17(12)$		
$\mathrm{C} 7 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{O} 1 A$	$-5.9(2)$	$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 7 A-\mathrm{N} 1 A$	$177.53(14)$
$\mathrm{C} 6 A-\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{O} 1 A$	$174.57(14)$	$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{C} 7 B-\mathrm{N} 1 B$	$-179.21(14)$
$\mathrm{C} 7 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{O} 1 B$	$-1.5(2)$	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 7 B-\mathrm{N} 1 B$	$3.5(2)$
$\mathrm{C} 6 B-\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{O} 1 B$	$-178.79(14)$	$\mathrm{C} 9 A-\mathrm{C} 8 A-\mathrm{N} 1 A-\mathrm{C} 7 A$	$22.5(2)$
$\mathrm{O} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{O} 2 A$	$3.9(2)$	$\mathrm{C} 11 A-\mathrm{C} 8 A-\mathrm{N} 1 A-\mathrm{C} 7 A$	$141.16(16)$
$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{O} 2 B$	$179.89(13)$	$\mathrm{C} 10 A-\mathrm{C} 8 A-\mathrm{N} 1 A-\mathrm{C} 7 A-100.12(17)$	
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 7 A-\mathrm{N} 1 A$	$-2.0(2)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$) for (I).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{C} 1 A-\mathrm{C} 6 A$ and $\mathrm{C} 1 B-\mathrm{C} 6 B$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 A-\mathrm{H} 3 A \cdots \mathrm{O} 4 B^{\mathrm{i}}$	$0.861(16)$	$1.845(16)$	$2.7011(15)$	$173(2)$
$\mathrm{O} 3 B-\mathrm{H} 3 B \cdots \mathrm{O} 4 A^{\text {ii }}$	$0.841(16)$	$1.863(16)$	$2.6994(16)$	$173(2)$
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 1 B^{\text {iii }}$	$0.831(15)$	$1.977(18)$	$2.7300(15)$	$150(2)$
$\mathrm{O} 4 A-\mathrm{H} 4 A \cdots \mathrm{O} 2 B^{\text {iii }}$	$0.831(15)$	$2.430(19)$	$3.0894(15)$	$137(2)$
$\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 1 A^{\text {iv }}$	$0.860(15)$	$1.921(17)$	$2.7205(15)$	$154(2)$
$\mathrm{O} 4 B-\mathrm{H} 4 B \cdots \mathrm{O} 2 A^{\text {iv }}$	$0.860(15)$	$2.523(19)$	$3.1811(15)$	$133.9(18)$
$\mathrm{O} 5 A-\mathrm{H} 5 A \cdots \mathrm{O} 1 B^{\text {iii }}$	$0.839(15)$	$1.927(16)$	$2.7548(16)$	$169(2)$
$\mathrm{O} 5 B-\mathrm{H} 5 B \cdots \mathrm{O} 1 A^{\text {iv }}$	$0.845(15)$	$1.998(16)$	$2.8351(16)$	$171(2)$
$\mathrm{N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 1 A$	$0.878(19)$	$1.898(19)$	$2.6331(17)$	$140.3(15)$
$\mathrm{N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 1 B$	$0.887(19)$	$1.876(19)$	$2.6210(17)$	$140.4(16)$
$\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.97	2.84	$3.7045(17)$	149
$\mathrm{C} 33 B-\mathrm{H} 33 F \cdots \mathrm{Cg}^{\text {vi }}$	0.96	2.97	$3.628(2)$	127

Symmetry codes: (i) $x+1, y+2, z$; (ii) $x-1, y-2, z$; (iii) $x+1, y+1, z$; (iv) $x-1, y-1, z ;(\mathrm{v})-x+1,-y+2,-z+1$; (vi) $-x+2,-y+2,-z$.

Compound (II)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=288.26$
Monoclinic, $P 2_{1} / c$
$a=16.9205$ (11) \AA
$b=10.7034$ (6) \AA
$c=7.2308$ (5) \AA
$\beta=99.518$ (5)
$V=1291.52(14) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.482 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.13 \mathrm{~mm}^{-1} \\
& T=296 \mathrm{~K} \\
& \text { Plate, yellow } \\
& 0.38 \times 0.25 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Stoe IPDS-II diffractometer

 ω scansAbsorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.955, T_{\text {max }}=0.989$
11553 measured reflections
2877 independent reflections 1898 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.107$
$S=0.93$
2877 reflections
214 parameters
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0623 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.30 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.053 (4)

Table 3
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$) for (II).

$\mathrm{C} 5-\mathrm{N} 2$	$1.437(2)$	$\mathrm{C} 8-\mathrm{N} 1$	$1.4673(18)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	$121.75(13)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 11$	$106.98(13)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 2$	$119.57(14)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$110.47(12)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$123.18(14)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 10$	$106.61(12)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-178.96(16)$	$\mathrm{C} 10-\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7$	$-89.06(19)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 4$	$-179.39(14)$		

Table 4
Hydrogen-bond geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 4-\mathrm{H} 4 A \cdots 5^{\text {i }}$	0.82	1.97	2.6801 (15)	145
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 1^{\text {ii }}$	0.82	2.03	2.6661 (15)	134
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 6^{\text {iii }}$	0.819 (17)	1.961 (18)	2.765 (2)	167 (3)
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iv }}$	0.829 (18)	2.037 (19)	2.855 (2)	169 (3)
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$	0.86 (2)	1.95 (2)	2.6221 (17)	134.6 (18)
O6-H6 . . 77	0.88 (3)	1.77 (3)	2.649 (2)	173 (2)

Symmetry codes: (i) $x,-y+\frac{1}{2}, z-\frac{1}{2}$; (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (iv)
$-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.

Compound (III)

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}$
$M_{r}=193.24$
Trigonal, $R 3$
$a=23.561(4) \AA$
$c=5.7823(8) \AA$
$V=2779.8(8) \AA^{3}$
$Z=9$
$D_{x}=1.039 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, yellow
$0.50 \times 0.37 \times 0.23 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer
ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\min }=0.967, T_{\max }=0.982$
2997 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.093$
$S=0.81$
1209 reflections
134 parameters

Table 5
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (III).

$\mathrm{C} 8-\mathrm{N} 1$	$1.468(4)$		
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$122.0(3)$	$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 10$	$109.8(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$107.5(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$119.2(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$-1.7(4)$	$\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$179.6(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{O} 2$	$65.7(4)$		

Table 6
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2 $\cdots \mathrm{O}^{\text {i }}$	$1.04(5)$	$1.65(5)$	$2.675(4)$	$170(4)$
O1-H1 $\cdots \mathrm{N} 1$	$1.04(7)$	$1.67(7)$	$2.591(3)$	$145(5)$

Symmetry code: (i) $-y+\frac{2}{3}, x-y+\frac{1}{3}, z+\frac{1}{3}$.

Table 7
Observed $\pi-\pi$ interaction distances (\AA) for (I), (II) and (III).
$C g 1$ is the centroid of the $\mathrm{C} 1 A-\mathrm{C} 6 A$ ring in (I) and the $\mathrm{C} 1-\mathrm{C} 6$ ring in (II) and (III); $C g 2$ is the centroid of the $\mathrm{C} 1 B-\mathrm{C} 6 B$ ring.

Compound	$C g-C g$	$d_{\text {centroids }}$	$d_{\text {perpendicular }}$
(I)	$C g 1-C g 2^{\text {i }}$	$4.056(10)$	3.243
(II)	$C g 1-C g 1^{\text {ii }}$	$3.684(10)$	3.508
(III)	$C g 1-C g 1^{\text {iii }}$	$4.951(3)$	4.929
(III)	$C g 1-C g 1^{\text {iv }}$	$5.971(3)$	4.012

Symmetry codes: (i) $x-1, y, z$; (ii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$; (iii) $-y+\frac{1}{3}, x-y-\frac{1}{3}, z-\frac{1}{3}$; (iv) $-x+y+\frac{2}{3},-x+\frac{1}{3}, z-\frac{2}{3}$.

Table 8
Observed bond distances (Å) for (I), (II) and (III).

Compound	$\mathrm{C} 1-\mathrm{C} 2$	$\mathrm{C} 2-\mathrm{O} 1$	$\mathrm{C} 1-\mathrm{C} 7$	$\mathrm{C} 7-\mathrm{N} 1$
(IA)	$1.417(2)$	$1.2936(16)$	$1.414(2)$	$1.2983(18)$
(IB)	$1.420(2)$	$1.2952(16)$	$1.418(2)$	$1.2960(18)$
(II)	$1.443(2)$	$1.2666(19)$	$1.423(2)$	$1.284(2)$
(III)	$1.397(4)$	$1.347(4)$	$1.448(4)$	$1.263(4)$

For (I), H atoms attached to N atoms were refined freely. The positions of O-bound H atoms were refined and the $U_{\text {iso }}(\mathrm{H})$ values were fixed at $0.082 \AA^{2}$. All other H atoms were refined using a riding model, with C-H distances of $0.93-0.97 \AA$ and $U_{\text {iso }}$ values equal to 1.5 (methyl H atoms) or 1.2 (other H atoms) times $U_{\text {eq }}$ of the parent atom. For (II), the H atoms bonded to atoms $\mathrm{C} 9-\mathrm{C} 11, \mathrm{O} 4$ and O 5 were refined as riding $\left[\mathrm{C}-\mathrm{H}=0.97 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA\right.$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$ and $\left.1.5 U_{\text {eq }}(\mathrm{O})\right]$. All other H atoms were refined freely, with $\mathrm{C}-\mathrm{H}$ distances in the range 0.93 (2)-0.98 (2) \AA. For (III), O-bound H atoms were refined freely; all other H atoms were refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \mathrm{~A}$ and $U_{\text {iso }}$ values
equal to 1.5 (methyl H atoms) or 1.2 (other H atoms) times U_{eq} of the parent atom.

For all three compounds, data collection: X - A REA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ1092). Services for accessing these data are described at the back of the journal.

References

Allen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Cohen, M. D., Schmidt, G. M. J. \& Flavian, J. (1964). J. Chem. Soc. pp. 20412051.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Filarowski, A., Koll, A. \& Glowiak, T. (2002). J. Mol. Struct. 615, 97-108.
Kaitner, B. \& Pavlovic, G. (1996). Acta Cryst. C52, 2573-2575.
Krygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. \& Szady, A. (1997). J. Phys. Chem. A, 101, 9399-9404.
Odabaşoğlu, M., Albayrak, Ç., Büyükgüngör, O. \& Lönnecke, P. (2003). Acta Cryst. C59, o616-o619.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Wozniak, K., He, H., Klinowski, J. \& Jones, W. (1995). J. Chem. Soc. Faraday Trans. 91, 77-85.
Yıldız, M., Kılıç, Z. \& Hökelek, T. (1998). J. Mol. Struct. 441, 1-10.
Zhou, Y.-S., Zhang, L.-J., Zeng, X.-R., Vital, J. J. \& You, X.-Z. (2000). J. Mol. Struct. 524, 241-250.

